3.5.23 \(\int \cot ^6(c+d x) (a+b \tan (c+d x)) \, dx\) [423]

3.5.23.1 Optimal result
3.5.23.2 Mathematica [C] (verified)
3.5.23.3 Rubi [A] (verified)
3.5.23.4 Maple [A] (verified)
3.5.23.5 Fricas [A] (verification not implemented)
3.5.23.6 Sympy [A] (verification not implemented)
3.5.23.7 Maxima [A] (verification not implemented)
3.5.23.8 Giac [B] (verification not implemented)
3.5.23.9 Mupad [B] (verification not implemented)

3.5.23.1 Optimal result

Integrand size = 19, antiderivative size = 93 \[ \int \cot ^6(c+d x) (a+b \tan (c+d x)) \, dx=-a x-\frac {a \cot (c+d x)}{d}+\frac {b \cot ^2(c+d x)}{2 d}+\frac {a \cot ^3(c+d x)}{3 d}-\frac {b \cot ^4(c+d x)}{4 d}-\frac {a \cot ^5(c+d x)}{5 d}+\frac {b \log (\sin (c+d x))}{d} \]

output
-a*x-a*cot(d*x+c)/d+1/2*b*cot(d*x+c)^2/d+1/3*a*cot(d*x+c)^3/d-1/4*b*cot(d* 
x+c)^4/d-1/5*a*cot(d*x+c)^5/d+b*ln(sin(d*x+c))/d
 
3.5.23.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.05 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.98 \[ \int \cot ^6(c+d x) (a+b \tan (c+d x)) \, dx=\frac {b \cot ^2(c+d x)}{2 d}-\frac {b \cot ^4(c+d x)}{4 d}-\frac {a \cot ^5(c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},1,-\frac {3}{2},-\tan ^2(c+d x)\right )}{5 d}+\frac {b \log (\cos (c+d x))}{d}+\frac {b \log (\tan (c+d x))}{d} \]

input
Integrate[Cot[c + d*x]^6*(a + b*Tan[c + d*x]),x]
 
output
(b*Cot[c + d*x]^2)/(2*d) - (b*Cot[c + d*x]^4)/(4*d) - (a*Cot[c + d*x]^5*Hy 
pergeometric2F1[-5/2, 1, -3/2, -Tan[c + d*x]^2])/(5*d) + (b*Log[Cos[c + d* 
x]])/d + (b*Log[Tan[c + d*x]])/d
 
3.5.23.3 Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.02, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.895, Rules used = {3042, 4012, 3042, 4012, 25, 3042, 4012, 3042, 4012, 25, 3042, 4012, 3042, 4014, 3042, 25, 3956}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^6(c+d x) (a+b \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a+b \tan (c+d x)}{\tan (c+d x)^6}dx\)

\(\Big \downarrow \) 4012

\(\displaystyle \int \cot ^5(c+d x) (b-a \tan (c+d x))dx-\frac {a \cot ^5(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {b-a \tan (c+d x)}{\tan (c+d x)^5}dx-\frac {a \cot ^5(c+d x)}{5 d}\)

\(\Big \downarrow \) 4012

\(\displaystyle \int -\cot ^4(c+d x) (a+b \tan (c+d x))dx-\frac {a \cot ^5(c+d x)}{5 d}-\frac {b \cot ^4(c+d x)}{4 d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \cot ^4(c+d x) (a+b \tan (c+d x))dx-\frac {a \cot ^5(c+d x)}{5 d}-\frac {b \cot ^4(c+d x)}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\int \frac {a+b \tan (c+d x)}{\tan (c+d x)^4}dx-\frac {a \cot ^5(c+d x)}{5 d}-\frac {b \cot ^4(c+d x)}{4 d}\)

\(\Big \downarrow \) 4012

\(\displaystyle -\int \cot ^3(c+d x) (b-a \tan (c+d x))dx-\frac {a \cot ^5(c+d x)}{5 d}+\frac {a \cot ^3(c+d x)}{3 d}-\frac {b \cot ^4(c+d x)}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\int \frac {b-a \tan (c+d x)}{\tan (c+d x)^3}dx-\frac {a \cot ^5(c+d x)}{5 d}+\frac {a \cot ^3(c+d x)}{3 d}-\frac {b \cot ^4(c+d x)}{4 d}\)

\(\Big \downarrow \) 4012

\(\displaystyle -\int -\cot ^2(c+d x) (a+b \tan (c+d x))dx-\frac {a \cot ^5(c+d x)}{5 d}+\frac {a \cot ^3(c+d x)}{3 d}-\frac {b \cot ^4(c+d x)}{4 d}+\frac {b \cot ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 25

\(\displaystyle \int \cot ^2(c+d x) (a+b \tan (c+d x))dx-\frac {a \cot ^5(c+d x)}{5 d}+\frac {a \cot ^3(c+d x)}{3 d}-\frac {b \cot ^4(c+d x)}{4 d}+\frac {b \cot ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a+b \tan (c+d x)}{\tan (c+d x)^2}dx-\frac {a \cot ^5(c+d x)}{5 d}+\frac {a \cot ^3(c+d x)}{3 d}-\frac {b \cot ^4(c+d x)}{4 d}+\frac {b \cot ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 4012

\(\displaystyle \int \cot (c+d x) (b-a \tan (c+d x))dx-\frac {a \cot ^5(c+d x)}{5 d}+\frac {a \cot ^3(c+d x)}{3 d}-\frac {a \cot (c+d x)}{d}-\frac {b \cot ^4(c+d x)}{4 d}+\frac {b \cot ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {b-a \tan (c+d x)}{\tan (c+d x)}dx-\frac {a \cot ^5(c+d x)}{5 d}+\frac {a \cot ^3(c+d x)}{3 d}-\frac {a \cot (c+d x)}{d}-\frac {b \cot ^4(c+d x)}{4 d}+\frac {b \cot ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 4014

\(\displaystyle b \int \cot (c+d x)dx-\frac {a \cot ^5(c+d x)}{5 d}+\frac {a \cot ^3(c+d x)}{3 d}-\frac {a \cot (c+d x)}{d}-a x-\frac {b \cot ^4(c+d x)}{4 d}+\frac {b \cot ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle b \int -\tan \left (c+d x+\frac {\pi }{2}\right )dx-\frac {a \cot ^5(c+d x)}{5 d}+\frac {a \cot ^3(c+d x)}{3 d}-\frac {a \cot (c+d x)}{d}-a x-\frac {b \cot ^4(c+d x)}{4 d}+\frac {b \cot ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 25

\(\displaystyle -b \int \tan \left (\frac {1}{2} (2 c+\pi )+d x\right )dx-\frac {a \cot ^5(c+d x)}{5 d}+\frac {a \cot ^3(c+d x)}{3 d}-\frac {a \cot (c+d x)}{d}-a x-\frac {b \cot ^4(c+d x)}{4 d}+\frac {b \cot ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 3956

\(\displaystyle -\frac {a \cot ^5(c+d x)}{5 d}+\frac {a \cot ^3(c+d x)}{3 d}-\frac {a \cot (c+d x)}{d}-a x-\frac {b \cot ^4(c+d x)}{4 d}+\frac {b \cot ^2(c+d x)}{2 d}+\frac {b \log (-\sin (c+d x))}{d}\)

input
Int[Cot[c + d*x]^6*(a + b*Tan[c + d*x]),x]
 
output
-(a*x) - (a*Cot[c + d*x])/d + (b*Cot[c + d*x]^2)/(2*d) + (a*Cot[c + d*x]^3 
)/(3*d) - (b*Cot[c + d*x]^4)/(4*d) - (a*Cot[c + d*x]^5)/(5*d) + (b*Log[-Si 
n[c + d*x]])/d
 

3.5.23.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3956
Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d 
*x], x]]/d, x] /; FreeQ[{c, d}, x]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4014
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[(a*c + b*d)*(x/(a^2 + b^2)), x] + Simp[(b*c - a 
*d)/(a^2 + b^2)   Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && N 
eQ[a*c + b*d, 0]
 
3.5.23.4 Maple [A] (verified)

Time = 0.47 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.94

method result size
parallelrisch \(\frac {-12 \left (\cot ^{5}\left (d x +c \right )\right ) a -15 \left (\cot ^{4}\left (d x +c \right )\right ) b +20 \left (\cot ^{3}\left (d x +c \right )\right ) a +30 \left (\cot ^{2}\left (d x +c \right )\right ) b -60 a d x +60 b \ln \left (\tan \left (d x +c \right )\right )-30 b \ln \left (\sec ^{2}\left (d x +c \right )\right )-60 \cot \left (d x +c \right ) a}{60 d}\) \(87\)
derivativedivides \(\frac {-\frac {a}{5 \tan \left (d x +c \right )^{5}}-\frac {a}{\tan \left (d x +c \right )}-\frac {b}{4 \tan \left (d x +c \right )^{4}}+b \ln \left (\tan \left (d x +c \right )\right )+\frac {a}{3 \tan \left (d x +c \right )^{3}}+\frac {b}{2 \tan \left (d x +c \right )^{2}}-\frac {b \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2}-a \arctan \left (\tan \left (d x +c \right )\right )}{d}\) \(94\)
default \(\frac {-\frac {a}{5 \tan \left (d x +c \right )^{5}}-\frac {a}{\tan \left (d x +c \right )}-\frac {b}{4 \tan \left (d x +c \right )^{4}}+b \ln \left (\tan \left (d x +c \right )\right )+\frac {a}{3 \tan \left (d x +c \right )^{3}}+\frac {b}{2 \tan \left (d x +c \right )^{2}}-\frac {b \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2}-a \arctan \left (\tan \left (d x +c \right )\right )}{d}\) \(94\)
norman \(\frac {-\frac {a}{5 d}-a x \left (\tan ^{5}\left (d x +c \right )\right )+\frac {a \left (\tan ^{2}\left (d x +c \right )\right )}{3 d}-\frac {a \left (\tan ^{4}\left (d x +c \right )\right )}{d}-\frac {b \tan \left (d x +c \right )}{4 d}+\frac {b \left (\tan ^{3}\left (d x +c \right )\right )}{2 d}}{\tan \left (d x +c \right )^{5}}+\frac {b \ln \left (\tan \left (d x +c \right )\right )}{d}-\frac {b \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2 d}\) \(113\)
risch \(-i b x -a x -\frac {2 i b c}{d}-\frac {2 \left (45 i a \,{\mathrm e}^{8 i \left (d x +c \right )}+30 b \,{\mathrm e}^{8 i \left (d x +c \right )}-90 i a \,{\mathrm e}^{6 i \left (d x +c \right )}-60 b \,{\mathrm e}^{6 i \left (d x +c \right )}+140 i a \,{\mathrm e}^{4 i \left (d x +c \right )}+60 b \,{\mathrm e}^{4 i \left (d x +c \right )}-70 i a \,{\mathrm e}^{2 i \left (d x +c \right )}-30 b \,{\mathrm e}^{2 i \left (d x +c \right )}+23 i a \right )}{15 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{5}}+\frac {b \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d}\) \(159\)

input
int(cot(d*x+c)^6*(a+b*tan(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/60*(-12*cot(d*x+c)^5*a-15*cot(d*x+c)^4*b+20*cot(d*x+c)^3*a+30*cot(d*x+c) 
^2*b-60*a*d*x+60*b*ln(tan(d*x+c))-30*b*ln(sec(d*x+c)^2)-60*cot(d*x+c)*a)/d
 
3.5.23.5 Fricas [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.19 \[ \int \cot ^6(c+d x) (a+b \tan (c+d x)) \, dx=\frac {30 \, b \log \left (\frac {\tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) \tan \left (d x + c\right )^{5} - 15 \, {\left (4 \, a d x - 3 \, b\right )} \tan \left (d x + c\right )^{5} - 60 \, a \tan \left (d x + c\right )^{4} + 30 \, b \tan \left (d x + c\right )^{3} + 20 \, a \tan \left (d x + c\right )^{2} - 15 \, b \tan \left (d x + c\right ) - 12 \, a}{60 \, d \tan \left (d x + c\right )^{5}} \]

input
integrate(cot(d*x+c)^6*(a+b*tan(d*x+c)),x, algorithm="fricas")
 
output
1/60*(30*b*log(tan(d*x + c)^2/(tan(d*x + c)^2 + 1))*tan(d*x + c)^5 - 15*(4 
*a*d*x - 3*b)*tan(d*x + c)^5 - 60*a*tan(d*x + c)^4 + 30*b*tan(d*x + c)^3 + 
 20*a*tan(d*x + c)^2 - 15*b*tan(d*x + c) - 12*a)/(d*tan(d*x + c)^5)
 
3.5.23.6 Sympy [A] (verification not implemented)

Time = 1.36 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.30 \[ \int \cot ^6(c+d x) (a+b \tan (c+d x)) \, dx=\begin {cases} \tilde {\infty } a x & \text {for}\: c = 0 \wedge d = 0 \\x \left (a + b \tan {\left (c \right )}\right ) \cot ^{6}{\left (c \right )} & \text {for}\: d = 0 \\\tilde {\infty } a x & \text {for}\: c = - d x \\- a x - \frac {a}{d \tan {\left (c + d x \right )}} + \frac {a}{3 d \tan ^{3}{\left (c + d x \right )}} - \frac {a}{5 d \tan ^{5}{\left (c + d x \right )}} - \frac {b \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac {b \log {\left (\tan {\left (c + d x \right )} \right )}}{d} + \frac {b}{2 d \tan ^{2}{\left (c + d x \right )}} - \frac {b}{4 d \tan ^{4}{\left (c + d x \right )}} & \text {otherwise} \end {cases} \]

input
integrate(cot(d*x+c)**6*(a+b*tan(d*x+c)),x)
 
output
Piecewise((zoo*a*x, Eq(c, 0) & Eq(d, 0)), (x*(a + b*tan(c))*cot(c)**6, Eq( 
d, 0)), (zoo*a*x, Eq(c, -d*x)), (-a*x - a/(d*tan(c + d*x)) + a/(3*d*tan(c 
+ d*x)**3) - a/(5*d*tan(c + d*x)**5) - b*log(tan(c + d*x)**2 + 1)/(2*d) + 
b*log(tan(c + d*x))/d + b/(2*d*tan(c + d*x)**2) - b/(4*d*tan(c + d*x)**4), 
 True))
 
3.5.23.7 Maxima [A] (verification not implemented)

Time = 0.36 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.00 \[ \int \cot ^6(c+d x) (a+b \tan (c+d x)) \, dx=-\frac {60 \, {\left (d x + c\right )} a + 30 \, b \log \left (\tan \left (d x + c\right )^{2} + 1\right ) - 60 \, b \log \left (\tan \left (d x + c\right )\right ) + \frac {60 \, a \tan \left (d x + c\right )^{4} - 30 \, b \tan \left (d x + c\right )^{3} - 20 \, a \tan \left (d x + c\right )^{2} + 15 \, b \tan \left (d x + c\right ) + 12 \, a}{\tan \left (d x + c\right )^{5}}}{60 \, d} \]

input
integrate(cot(d*x+c)^6*(a+b*tan(d*x+c)),x, algorithm="maxima")
 
output
-1/60*(60*(d*x + c)*a + 30*b*log(tan(d*x + c)^2 + 1) - 60*b*log(tan(d*x + 
c)) + (60*a*tan(d*x + c)^4 - 30*b*tan(d*x + c)^3 - 20*a*tan(d*x + c)^2 + 1 
5*b*tan(d*x + c) + 12*a)/tan(d*x + c)^5)/d
 
3.5.23.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 198 vs. \(2 (85) = 170\).

Time = 0.62 (sec) , antiderivative size = 198, normalized size of antiderivative = 2.13 \[ \int \cot ^6(c+d x) (a+b \tan (c+d x)) \, dx=\frac {6 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 15 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 70 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 180 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 960 \, {\left (d x + c\right )} a - 960 \, b \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right ) + 960 \, b \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + 660 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {2192 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 660 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 180 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 70 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 15 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, a}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5}}}{960 \, d} \]

input
integrate(cot(d*x+c)^6*(a+b*tan(d*x+c)),x, algorithm="giac")
 
output
1/960*(6*a*tan(1/2*d*x + 1/2*c)^5 - 15*b*tan(1/2*d*x + 1/2*c)^4 - 70*a*tan 
(1/2*d*x + 1/2*c)^3 + 180*b*tan(1/2*d*x + 1/2*c)^2 - 960*(d*x + c)*a - 960 
*b*log(tan(1/2*d*x + 1/2*c)^2 + 1) + 960*b*log(abs(tan(1/2*d*x + 1/2*c))) 
+ 660*a*tan(1/2*d*x + 1/2*c) - (2192*b*tan(1/2*d*x + 1/2*c)^5 + 660*a*tan( 
1/2*d*x + 1/2*c)^4 - 180*b*tan(1/2*d*x + 1/2*c)^3 - 70*a*tan(1/2*d*x + 1/2 
*c)^2 + 15*b*tan(1/2*d*x + 1/2*c) + 6*a)/tan(1/2*d*x + 1/2*c)^5)/d
 
3.5.23.9 Mupad [B] (verification not implemented)

Time = 4.96 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.25 \[ \int \cot ^6(c+d x) (a+b \tan (c+d x)) \, dx=\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )-\mathrm {i}\right )\,\left (-\frac {b}{2}+\frac {a\,1{}\mathrm {i}}{2}\right )}{d}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )\,\left (\frac {b}{2}+\frac {a\,1{}\mathrm {i}}{2}\right )}{d}+\frac {b\,\ln \left (\mathrm {tan}\left (c+d\,x\right )\right )}{d}-\frac {{\mathrm {cot}\left (c+d\,x\right )}^5\,\left (a\,{\mathrm {tan}\left (c+d\,x\right )}^4-\frac {b\,{\mathrm {tan}\left (c+d\,x\right )}^3}{2}-\frac {a\,{\mathrm {tan}\left (c+d\,x\right )}^2}{3}+\frac {b\,\mathrm {tan}\left (c+d\,x\right )}{4}+\frac {a}{5}\right )}{d} \]

input
int(cot(c + d*x)^6*(a + b*tan(c + d*x)),x)
 
output
(log(tan(c + d*x) - 1i)*((a*1i)/2 - b/2))/d - (log(tan(c + d*x) + 1i)*((a* 
1i)/2 + b/2))/d + (b*log(tan(c + d*x)))/d - (cot(c + d*x)^5*(a/5 + (b*tan( 
c + d*x))/4 - (a*tan(c + d*x)^2)/3 + a*tan(c + d*x)^4 - (b*tan(c + d*x)^3) 
/2))/d